Linking the Researchers, Developing the Innovations Manuscripts submittal opens till 15th August, 2017. Please submit your papers at or

  • Volume 2015

    A Negative Refractive Index Metamaterial Structure for Antenna Gain Enhancement
    (International Journal of Engineering Works)

    Vol. 2, Issue 12, PP. 93-98, Dec. 2015
    Keywords: negative refractive index, metamaterial, microstrip antenna, gain

    Download PDF


    A microstrip patch antenna over which a 6 layer of metamaterial superstrate with the negative refractive index is proposed for the enhancement of gain over the conventional patch antenna The negative refractive index (NRI) property of superstrate covers the frequency range from 774 MHz to 974 MHz. The superstrate is placed 55 mm above the microstrip patch antenna. The function of the properties of negative refractive index is to gather the EM wave radiated from the antenna and the free space toward the normal direction of the antenna. An electromagnetic simulation software CST is used to study the characteristics of this metamaterial and the designe for the proposed antenna. The simulated result indicates that the gain of the proposed antenna is increased by 87.6% (2.32dB), in the desired frequency band 935 MHz to 960 MHz is also increased. Therefore, the gain of the antenna is effectively enhanced based on the negative refractive index metamaterial.


    K.A. Devi: INTI International University Nilai, Malaysia,

    Ng Chun Hau: INTI International University Nilai,

    C. K. Chakrabarty: Universiti Tenaga Nasional Putrajaya Campus, Kajang, Malaysia,

    Norashidah Md. Din: Universiti Tenaga Nasional Putrajaya Campus, Kajang, Malaysia, norashidah

    Kwong Chiew Foong: University of Nottingham Ningbo Campus, China,

    Full Text


    K.A. Devi, Ng Chun Hau,C. K. Chakrabarty, Norashidah Md. Din, Kwong Chiew Foong, "A Negative Refractive Index Metamaterial Structure for Antenna Gain Enhancement"International Journal of Engineering Works, Vol. 2, Issue 12, PP. 93-98, Dec. 2015.


    [1] C. A. Balanis, Antenna Theory Analysis and Design, Third Edit., no. 3. 2005.
    [2] V. G. Veselago, “The Electrodynamics of Substances With Simultaneously Negative Values of ε and μ,” Sov. Phys. Uspekhi, vol. 509, no. 4, pp. 509–514, 1968.
    [3] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive index.,” Phys. Rev. Lett., vol. 90, no. 10, p. 107402, 2003.
    [4] J. B. Pendry, “Controlling Electromagnetic Fields,” Science (80-. )., vol. 312, no. 5781, pp. 1780–1782, 2006.
    [5] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, 2000.
    [6] B.-I. Wu, W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, “A Study of Using Metamaterials As Antenna Substrate To Enhance Gain,” Prog. Electromagn. Res., vol. 51, pp. 295–328, 2005.
    [7] P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, “Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure,” Photonics Nanostructures - Fundam. Appl., vol. 7, no. 2, pp. 92–100, 2009.
    [8] P. Dawar and A. De, “Bandwidth Enhancement of RMPA using ENG metamaterials at THz,” Mater. Sci. Appl., vol. 4, pp. 579–588, 2013.
    [9] C. Sabah, “Progress In Electromagnetics Research B, Vol. 22, 341–357, 2010,” Prog. Electromagn. Res. B, vol. 22, pp. 341–357, 2010.
    [10] H. a. Majid, M. K. a. Rahim, and T. Masri, “Microstrip Antenna’S Gain Enhancement Using Left-Handed Metamaterial Structure,” Prog. Electromagn. Res. M, vol. 8, pp. 235–247, 2009.
    [11] K. Inamdar, Y. P. Kosta, and S. Patnaik, “Proposing a Criss-Cross Metamaterial Structure for Improvement of Performance Parameters of Microstrip Antennas,” Prog. Electromagn. Res. C, vol. 52, no. August, pp. 145–152, 2014.
    [12] M. Ullah, M. Islam, and M. Faruque, “A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement,” Materials (Basel)., vol. 6, no. 11, pp. 5058–5068, 2013.
    [13] J. Wang, L. Gong, Y. Sun, Z. Zhu, and Y. Zhang, “High-gain composite microstrip patch antenna with the near-zero-refractive-index metamaterial,” Opt. - Int. J. Light Electron Opt., vol. 125, no. 21, pp. 6491–6495, 2014.
    [14] H. Zhou, Z. Pei, S. Qu, S. Zhang, J. Wang, Z. Duan, H. Ma, and Z. Xu, “A novel high-directivity microstrip patch antenna based on zero-index metamaterial,” IEEE Antennas Wirel. Propag. Lett., vol. 8, pp. 538–541, 2009.
    [15] J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter, vol. 10, no. 22, pp. 4785–4809, 1998.
    [16] S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission.,” Phys. Rev. Lett., vol. 89, no. 21, p. 213902, 2002.
    [17] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E, vol. 71, no. 3, p. 036617, 2005.
    [18] A. P. Feresidis and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEE Proc. - Microwaves, Antennas Propag., vol. 148, no. 6, p. 345, 2001.