Linking the Researchers, Developing the Innovations Manuscripts submittal opens till 31 October, 2017. Please submit your papers at editor@kwpublisher.com or editorkwpublisher@gmail.com

  • Volume 2016

    On the Hausdorff Distance Between the Shifted Heaviside Function and Some Generic Growth Functions
    (International Journal of Engineering Works)

    Vol. 3, Issue 10, PP. 73-77, October 2016

    Keywords: Sigmoid functions, Heaviside function, Turner– Bradley–Kirk–Pruitt generic function, Hausdorff distance, Upper and lower bounds

    Download PDF

    Abstract

    In this paper we study the one–sided Hausdorff distance between the shifted Heaviside function and some generic growth function such as Turner–Bradley–Kirk–Pruitt function. Numerical examples are presented using CAS MATHEMATICA

    Author

    1. Nikolay Kyurkchiev, nkyurk@math.bas.bg, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, 1113 Sofia, Bulgaria
    2. Anton Iliev, aii@uni-plovdiv.bg, Faculty of Mathematics and Informatics, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria

    Full Text

    Cite

    Nikolay Kyurkchiev and Anton Iliev,"On the Hausdorff Distance Between the Shifted Heaviside Function  and Some Generic Growth Functions", International Journal of Engineering Works, Vol. 3, Issue 10, PP. 73-77, October 2016. 

    References

    1.  Shoffner, S. Schnell, Estimation of the lag time in a subsequent monomer addition model for fibril elongation, bioRxiv The preprint server for biology (2015), 1–8, doi:10.1101/034900
    2. P. Arosio, T. P. J. Knowles, S. Linse, On the lag phase in amyloid fibril formation, Physical Chemistry Chemical Physics 17 (2015) 7606–7618, doi:10.1039/C4CP05563B
    3. N. Kyurkchiev, A note on the new geometric representation for the parameters in the fibril elongation process, Compt. rend. Acad. bulg. Sci. 69 (8) (2016) 963–972.
    4. S. Markov, Building reaction kinetic models for amyloid fibril growth, BIOMATH 5 2016, doi:10.11145/j.biomath.2016.07.311
    5. N. Kyurkchiev, S. Markov, Approximation of the cut function by some generic logistic functions and applications, Advances in Applied Sciences (2016) (accepted).
    6. J. A. Nelder, The fitting of a generalization of the logistic curve, Biometrics 17 (1961) 89–110.
    7. M. Turner, B. Blumenstein, J. Sebaugh, A Generalization of the Logistic Law of Growth, Biometrics 25 (3) (1969) 577–580.
    8. F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978–0–821– 83835–8.
    9. B. Sendov, Hausdorff Approximations (Kluwer, Boston, 1990), doi:10.1007/978-94-009-0673-0
    10. R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: M. Nehmeier et al. (Eds), Scientific Computing, Computer Arithmetic, and Validated Numerics, 16th International Symposium, SCAN 2014, LNCS 9553 (2016) 3–13, Springer, doi:10.1007/978-3-319-31769-4
    11. M. Turner, E. Bradley, K. Kirk, K. Pruitt, A theory of growth, Math. Biosci. 29 (1976) 367–373.
    12. P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance mathematique et physique 10 (1838) 113–121.
    13. A. Tsoularis, Analysis of logistic growth models, Les. Lett. Inf. Math. Sci. 2 (2001) 23–46.
    14. N.  Kyurkchiev,  S.  Markov,  On  the Hausdorff  distance  between  theHeaviside step function and Verhulst logistic function, J. Math. Chem.54(1) (2016) 109–119, doi:10.1007/S10910-015-0552-0

    15. N. Kyurkchiev, S. Markov, Sigmoidal functions: some computational and modelling aspects, Biomath Communications 1 (2) (2014) 30–48; doi:10.11145/j.bmc.2015.03.081.
    16. A. Iliev, N. Kyurkchiev, S. Markov, On the approximation of the cut and step functions by logistic and Gompertz functions, Biomath 4 (2) (2015) 2–13.
    17. N. Kyurkchiev, S. Markov, On the approximation of the generalized cut.
    18. A. Iliev, N. Kyurkchiev, S. Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation (2015), doi:10.1016/j.matcom.2015.11.005
    19. N. Kyurkchiev, A. Iliev, On some growth curve modeling: approximation theory and applications, Int. J. of Trends in Research and Development, 3(3) (2016) 466–471.
    20. N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN: 978-3-659-76045-7.
    21. N. Kyurkchiev, A. Iliev, A note on some growth curves arising from Box-Cox transformation, Int. J. of Engineering Works 3(6) (2016) 47– 51.
    22. N. Kyurkchiev, S. Markov, A. Iliev, A note on the Schnute growth model, Int. J. of Engineering Research and Development 12(6) (2016) 47–54.
    23. A. Iliev, N. Kyurkchiev, S. Markov, On the Hausdorff distance between the shifted Heaviside step function and the transmuted Stannard growth function, BIOMATH (2016) (accepted).
    24. N. Kyurkchiev, On the Approximation of the step function by some cumulative distribution functions, Compt. rend. Acad. bulg. Sci. 68(12) (2015) 1475–1482
    25. V. Kyurkchiev, N. Kyurkchiev, On the Approximation of the Step function by Raised-Cosine and Laplace Cumulative Distribution Functions, European International Journal of Science and Technology 4(9) (2016) 75–84.
    26. A. Iliev, N. Kyurkchiev, S. Markov, Approximation of the Cut Function by Stannard and Richard Sigmoid Functions, International Journal of Pure and Applied Mathematics 109(1) (2016) 119–128.
    27. A. Blumberg, Logistic Growth Rate Functions, Journal of Theoretical Biology 21 (1968) 42–44.
    28. B. Gompertz, On the nature of the function expressive of the law of human mortality, Philosophical Transactions 27 (1825) 513–519.
    29. R. Pearl, The growth of populations, Quarterly Review of Biology 2 (1927) 532–548.