[1] Tang, Z., W. Tress, and O. Ingans, Light trapping in thin film organic solar cells. Materials today, 2014. 17(8): p. 389-396.
[2] Landy, N.I., et al., Perfect metamaterial absorber. Physical review letters, 2008. 100(20): p. 207402.
[3] Khan, A.D. and M. Amin, Tunable salisbury screen absorber using square lattice of plasmonic nanodisk. Plasmonics, 2017. 12(2): p. 257-262.
[4] Ullah, H., et al., Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array. Plasmonics, 2017: p. 1-7.
[5] Liu, X., et al., Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical review letters, 2010. 104(20): p. 207403.
[6] Khan, A.D., et al., Multiple higher-order Fano resonances in plasmonic hollow cylindrical nanodimer. Applied Physics A, 2015. 120(2): p. 641-649.
[7] Muhammad, N. and A.D. Khan, Tunable Fano resonances and electromagnetically induced transparency in all-dielectric holey block. Plasmonics, 2015. 10(6): p. 1687-1693.
[8] Zhang, S., et al., Experimental demonstration of near-infrared negative-index metamaterials. Physical review letters, 2005. 95(13): p. 137404.
[9] Khan, A.D., Multiple Fano resonances in bimetallic layered nanostructures. International Nano Letters, 2014. 4(2): p. 110.
[10] Khan, A.D., et al., Twin dipole Fano resonances in symmetric three-layered plasmonic nanocylinder. Plasmonics, 2015. 10(4): p. 963-970.
[11] Wang, Y., et al., Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano letters, 2011. 12(1): p. 440-445.
[12] Wu, C., et al., Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. Journal of Optics, 2012. 14(2): p. 024005.
[13] Rufangura, P. and C. Sabah, Dual-band perfect metamaterial absorber for solar cell applications. Vacuum, 2015. 120: p. 68-74.
[14] Khan, A. and M. Amin, Polarization Selective Multiple Fano Resonances in Coupled T-Shaped Metasurface. IEEE Photonics Technology Letters, 2017. 29(19): p. 1611-1614.
[15] Muhammad, N. and A.D. Khan, Electromagnetically Induced Transparency and Sharp Asymmetric Fano Line Shapes in All-Dielectric Nanodimer. Plasmonics, 2017. 12(5): p. 1399-1407.
[16] Amin, M. and A.D. Khan, Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure. The Journal of Physical Chemistry C, 2015. 119(37): p. 21633-21638.
[17] Khan, A.D. and G. Miano, Investigation of plasmonic resonances in mismatched gold nanocone dimers. Plasmonics, 2014. 9(1): p. 35-45.
[18] Liu, N., et al., Infrared perfect absorber and its application as plasmonic sensor. Nano letters, 2010. 10(7): p. 2342-2348.
[19] Khan, A.D., Refractive index sensing with fano resonant L-shaped metasurface. Optical Materials, 2018. 82: p. 168-174.
[20] Khan, A.D., Enhanced plasmonic Fano-like resonances in multilayered nanoellipsoid. Applied Physics A, 2016. 122(4): p. 300.
[21] Iyer, A.K. and G.V. Eleftheriades. Negative refractive index metamaterials supporting 2-D waves. in Microwave Symposium Digest, 2002 IEEE MTT-S International. 2002. IEEE.
[22] Khan, A.D. and G. Miano, Higher order tunable Fano resonances in multilayer nanocones. Plasmonics, 2013. 8(2): p. 1023-1034.
[23] Khan, A.D. and G. Miano, Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics, 2013. 8(3): p. 1429-1437.
[24] Khan, A.D., et al., Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics, 2014. 9(5): p. 1091-1102.
[25] Khan, A.D., et al., Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer. Plasmonics, 2014. 9(2): p. 461-475.
[26] Li, Z., S. Butun, and K. Aydin, Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS nano, 2014. 8(8): p. 8242-8248.
[27] Liu, Z., et al., Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology, 2015. 26(23): p. 235702.
[28] Wang, B.-X., et al., Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters, 2014. 26(2): p. 111-114.
[29] Ullah, H., et al. Plasmonic perfect absorber for solar cell applications. in Emerging Technologies (ICET), 2016 International Conference on. 2016. IEEE.
[30] Hungerford, C.D. and P.M. Fauchet, Design of a plasmonic back reflector using Ag nanoparticles with a mirror support for an a-Si: H solar cell. AIP Advances, 2017. 7(7): p. 075004.
[31] Crudgington, L., T. Rahman, and S. Boden, Development of amorphous silicon solar cells with plasmonic light scattering. Vacuum, 2017. 139: p. 164-172.
[32] Sun, C., J. Su, and X. Wang, A design of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics, 2015. 10(3): p. 633-641.
[33] Sun, C., et al., A surface design for enhancement of light trapping efficiencies in thin film silicon solar cells. Plasmonics, 2016. 11(4): p. 1003-1010.
[34] Solanki, C.S., Solar photovoltaics: fundamentals, technologies and applications. 2015: PHI Learning Pvt. Ltd.