Linking the Researchers, Developing the Innovations Manuscripts submittal opens till 25 October, 2019. Please submit your papers at editor@kwpublisher.com or editorkwpublisher@gmail.com

  • Volume 2019

    Enhancing the Absorption and Power Conversion Efficiency of Organic Solar Cells
    (International Journal of Engineering Works)

    Vol. 6, Issue 03, PP. 94-97, March 2019
    DOI
    Keywords: Organcis solar cells, Bulk Heterojunction, PIF8BT:PDI, Buffer layer, Power Conversion Efficiency.

    Download PDF

    Abstract

    Optimizing the thickness of organic solar cells (OSCs) is a potent way to enhance the power conversion efficiency (PCE). In the present work, we have investigated a novel structure in which poly (9, 9‐dioctylindenofluorene‐co‐benzothiadiazole) (PIF8BT): N′‐bis (1‐ethylpropyl) ‐3, 4, 9, 10‐perylene tetracarboxy diimide (PDI) is used as a photoactive absorber layer. The influence of window layer material such as Zinc oxide (ZnO) and titanium dioxide (TiO2) with various electrode materials including Indium tin oxide (ITO), Fluorine tin oxide (FTO), aluminum(Al)  Silver (Ag) and Gold (Au) with different combinations have been investigated with the objective to enhance the absorption and PCE of the cell. Extracted results shows that the proposed scheme of the structure with ITO/Al as top and bottom electrode holds the highest performance parameters including Jsc=9.26 (mA/m2), Voc=0.59 (V), FF=68.86% and ƞ=3.86% respectively as compared to different electrode combination and window layers with the same photoactive absorber material( PIF8BT:PDI). This indicates that the proposed structure can be a good choice for replacing less efficient in-organic cell.

    Author

    1. Waqas Farooq: Sarhad University of Science & Information Technology, Peshawar 25000, Pakistan

    2. Aimal Daud Khan: Sarhad University of Science & Information Technology, Peshawar 25000, Pakistan

    3. Mahmood Khan: Sarhad University of Science & Information Technology, Peshawar 25000, Pakistan

    4. Javed Iqbal: Sarhad University of Science & Information Technology, Peshawar 25000, Pakistan

    Full Text

    Cite

    Waqas Farooq Aimal Daud Khan Mahmood Khan and Javed Iqbal Enhancing the Absorption and Power Conversion Efficiency of Organic Solar Cells International Journal of Engineering Works Vol. 6 Issue 03 PP. 94-97 March 2019

    References

     
    1. [1]     J. Conti, "International energy outlook 2016 with projections to 2040. 2016, USDOE Energy Information Administration (EIA)," Washington, DC (United States)

    2. [2]     D. Wöhrle and D. Meissner, " Organic solar cells,"      Advanced Materials, 1991. 3(3): p. 129-138.

    3. [3]     S. E. Shaheen, C. J. Brabec and N. S. Sariciftci, "2.5% efficient organic plastic solar cells," Applied Physics Letters, 2001. 78(6): p. 841-843.

    4. [4]     S. Mori, H. Ohoka, H. NAakao, T. Gotanda, Y. Nakano, H. Jung, A. Iida, R. Hayase, N.Shida, M.Saito, K. Todori, T. Asakura, A. Matsui and M. Hosoya, "Organic photovoltaic module development with inverted device structure," MRS Online Proceedings Library Archive, 2015. 173

    5. [5]     G. Li, R. Zhu and Y. Yang," Polymer solar cells. Nature photonics," 2012. 6(3): p. 153.

    6. [6]     R.Po, A. Bernardi, A. Calabrese, C. Carbonera, G. Corso and A. Pellegrino," From lab to fab: how must the polymer solar cell materials design change?–an industrial perspective," Energy & Environmental Science, 2014. 7(3): p. 925-943.

    7. [7]     M. C. Scharber and N. S. Sariciftci, "Efficiency of bulk-heterojunction organic solar cells," Progress in polymer science, 2013. 38(12): p. 1929-1940.

    8. [8]     [8]   M. A. Green, "Corrigendum to ‘Solar cell efficiency tables (version 49)’[Prog. Photovolt: Res. Appl. 2017; 25: 3–13]," Progress in Photovoltaics: Research and Applications, 2017. 4(25): p. 333-334.

    9. [9]     S. Holiday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielson, C. H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant and I. McCulloch, " High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor," Nature communications, 2016. 7: p. 11585.

    10. [10]  S. Cavaliere, S. Subianto, L. Savych, D. J. Jones and J. Roziere, " Electrospinning: designed architectures for energy conversion and storage devices,"  Energy & Environmental Science, 2011. 4(12): p. 4761-4785.

    11. [11]  H. L. Yip and A. K,-Y. Jen, " Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells," Energy & Environmental Science, 2012. 5(3): p. 5994-6011.

    12. [12]  N. Marinova, S. Valero and J. L Delgado, " Organic and perovskite solar cells: working principles, materials and interfaces," Journal of colloid and interface science, 2017. 488: p. 373-389.

    13. [13]  A. D. Khan and A. D. Khan, " Optimization of highly efficient GaAs–silicon hybrid solar cell," Applied Physics A, 2018. 124(12): p. 851.

    14. [14]  J. Ouyang, "Solution-processed PEDOT: PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids,"  ACS applied materials & interfaces, 2013. 5(24): p. 13082-13088.

    15. [15]  D. J. Lipomi, J. A. Lee, M. Vosgueritchain, B. C. -K. Tee, J. A. Bolander and Z. Bao, " Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates," Chemistry of Materials, 2012. 24(2): p. 373-382.

    16. [16]  U. Lang, N. Naujoks and J. Dual, " Mechanical characterization of PEDOT: PSS thin films,"  Synthetic Metals, 2009. 159(5-6): p. 473-479.

    17. [17]  D. C. Look, " Recent advances in ZnO materials and devices,"  Materials Science and Engineering: B, 2001. 80(1-3): p. 383-387.

    18. [18]  N. R. Mlyuka, G. A. Niklasson, and C. G. Granqvist, " Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance," Solar Energy Materials and Solar Cells, 2009. 93(9): p. 1685-1687.

    19. [19]  J. Pala, M. Mordiya, D. Virpariya, A. Dangodara, P. Gandha, C. R. Savaliya, J. Joseph , T. Shiyani, D. Dhruv and J. H. Markna," Analysis and design optimization of organic dye sensitized solar cell based on simulation," in AIP Conference Proceedings. 2017. AIP Publishing.

    20. [20]  R. Stangl, C. Leendertz and J. Haschke, " Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET," in Solar Energy. 2010, IntechOpen.

    21. [21]  H. Movla, " Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis,"  Optik, 2014. 125(1): p. 67-70. 

    22. [22]  M. Burgelman, J. Verschraegen, S. Degrave and P.Nollet, "Modeling thin‐film PV devices," Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 143-153.

    23. [23]  H. Mohd. Zuhair, I. Saad, A. Roystone, A. M. Khairul, B. Ghosh and N. Bolong, " Enhancing efficiency of organic solar cells by interfacial materials modification," in 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). 2017. IEEE.

    24. [24]  R. C. I. MacKenzie, T. Kirchartz, G. F. A. Dibb and J. Nelson, " Modeling nongeminate recombination in P3HT: PCBM solar cells,"  The Journal of Physical Chemistry C, 2011. 115(19): p. 9806-9813.

    25. [25]  R.  Hanfland, M. A. Fischer, W.  Brütting, U. Würfel, and R. C. I. MacKenzie,"The physical meaning of charge extraction by linearly increasing voltage transients from organic solar cells,"  Applied Physics Letters, 2013. 103(6): p. 063904.

    26. [26]  F.  Deschler,  D.  Riedel, B.  Ecker, E. Hauff,  E.  D.  Como and R.  C. I. MacKenzie, "Increasing organic solar cell efficiency with polymer interlayers," Physical Chemistry Chemical Physics, 2013. 15(3): p. 764-769.

    27. [27]  R. C. I. MacKenzie, C. G. Shuttle , M. L. Chabinyc and J. Nelson, "Extracting microscopic device parameters from transient photocurrent measurements of P3HT: PCBM solar cells," Advanced Energy Materials, 2012. 2(6): p. 662-669.

    28. [28]  M. Lenes and L. J. A. Koster, "Thickness dependence of the efficiency of polymer: fullerene bulk heterojunction solar cells," Applied physics letters, 2006. 88(24): p. 243502.

    29. [29]  D. H.  Apaydın,  D. E.  Yıldız, , A. Cirpan and L. Toppare, "Optimizing the organic solar cell efficiency: role of the active layer thickness"  Solar Energy Materials and Solar Cells, 2013. 113: p. 100-105.

    30. [30]  M. C. Hanna and A. J. Nozik, "Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers," Journal of Applied Physics, 2006. 100(7): p. 074510.

    31. [31]  S. Fabiano, Z. Chen, S. Vahedi,  A. Facchetti,  B. Pignataro  and  M. A. Loi, "Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells," Journal of Materials Chemistry, 2011. 21(16): p. 5891-5896.

    32. [32]  K.Vandewal ,A.Gadisa ,W.D. Oosterbaan, S.Bertho ,F.Banishoeib ,I. V.Severen ,L.Lutsen ,T.J.    Cleij,D.Vanderzande and J.V. Manca, "The relation between open‐circuit voltage and the onset of photocurrent generation by charge‐transfer absorption in polymer: fullerene bulk heterojunction solar cells," Advanced Functional Materials, 2008. 18(14): p. 2064-2070.