Linking the Researchers, Developing the Innovations Manuscripts submittal opens till 10 May 2024. Please submit your papers at or

  • Volume 2019

    Novel Design of Optical Nano-Antennas to Enhanced Light-Absorption In Thin Film Solar Cell
    (International Journal of Engineering Works)

    Vol. 6, Issue 01, PP. 33-38, January 2019
    Keywords: Localized Surface Plasmon Resonance, Nano-Antenna, Ligth Management Scheme, Thin Film Photovoltaics

    Download PDF



    We propose a novel design of enhanced light-absorption schemes for thin-film solar cells based on optical Nano-Antennas whose parameter governing the features of localized surface Plasmon’s resonance and their effect on photosensitive possessions of the materials. The procedure of our design is based on excitation of collective modes of the optical Nano-Antennas whose electric field is localized between contiguous medium, collective modes is very productive to harness the long range of energy from solar spectrum with different and emerging material used in thin-film solar cells. We demonstrated theoretically substantial enhancement of solar-cell absorption spectral density in the whole spectrum range of the solar-cell operation equated to conventional structures commissioning anti-reflecting coating. We have been used COMSOL Multiphysics environment which is based on numerical finite element method (FEM). This approach is paramount substitute of anti-reflection coating and texturing in thin-film solar cells. Owing to less material usage along with efficient novel broad band light-harvesting structures, thin-film solar cells technically well-suited for large area fabrication techniques.


    1. Fazal E Subhan:University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)  
    2. Adnan Daud Khan:University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)  
    3. Fazal E Hilal:University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)  

    Full Text


    Novel Design of Optical Nano-Antennas to Enhanced Light-Absorption in Thin Film Solar Cell Fazal E Subhan Adnan Daud Khan and Fazal E Hilal International Journal of Engineering Works Vol. 6 Issue 01 PP. 33-38 January 2019


    [1]     Eriksen, Emil H., et al. "Particle-particle interactions in large, sparse arrays of randomly distributed plasmonic metal nanoparticles: a two-particle model." Optics Express 25.16 (2017): 19354-19359.

    [2]     Senthil Kumar, N., et al. "Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell." Journal of Materials Science: Materials in Electronics (2018): 1-10.

    [3]     Catchpole, KR and, Albert Polman. "Plasmonic solar cells." Optics   express 16.26 (2008): 21793- 21800.

    [4]     Dunbar, Ricky B., Thomas Pfadler, and Lukas Schmidt-Mende. "Highly       absorbing solar cells—a survey of plasmonic nanostructures." Optics express 20.102 (2012): A177-A189.

    [5]     Heidarzadeh, Hamid, et al. "Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating." Applied optics 55.7 (2016): 1779-1785.

    [6]     Al-Adhami, Yasir, and Ergun Ercelebi. "A Plasmonic Monopole Antenna Array on Flexible Photovoltaic Panels for Further Use of the Green Energy Harvesting." Progress in Electromagnetics Research 68 (2018): 143-152.

    [7]     Garcia, Miguel A. "Surface Plasmon’s in metallic nanoparticles: fundamentals and applications." Journal of Physics D: Applied Physics 44.28 (2011): 283001.

    [8]     Diukman, Iddo, and Meir Orenstein. "How front side plasmonic nanostructures enhance solar cell efficiency." Solar Energy Materials and Solar Cells 95.9 (2011): 2628-2631.

    [9]     Rockstuhl, Carsten, and Falk Lederer. "Photon management by metallic Nano-discs in thin film solar cells." Applied Physics Letters 94.21 (2009): 213102 .

    [10]  Dunbar, Ricky B., Thomas Pfadler, and Lukas Schmidt-Mende. "Highly absorbing solar cells—a survey of plasmonic nanostructures." Optics express 20.102 (2012): A177-A189.

    [11]  Jiao, Hongfei, et al. "Ultra-broadband perfect absorber based on successive Nano-Cr-film." Advances in Optical Thin Films VI. Vol. 10691. International Society for Optics and Photonics, 2018.

    [12]  Xu, Zhenhe, et al. "Harvesting Lost Photons: Plasmon and Up conversion Enhanced Broadband Photo Catalytic Activity in Core@ Shell Microspheres Based on Lanthanide‐Doped NaYF4, TiO2, and Au." Advanced Functional Materials 25.20 (2015): 2950-2960.

    [13]  Lu, Zelin, et al. "Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles." RSC Advances 5.15 (2015): 11175-11179.

    [14]  Saravanan, S., et al. "Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver Nano-particles." Journal of Science: Advanced Materials and Devices 2.4 (2017): 418-424.

    [15]  Lee, Kwang-Sup, et al. "Feature issue introduction: organic and polymeric materials for photonic applications." Optical Materials Express 7.7 (2017): 2691-2696.

    [16]  Ren, Wenzhen, et al. "Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell." Optics express 19.27 (2011): 26536-26550

    [17]  Navab, Arvin Attari, et al. "Hydrothermal synthesis of TiO2 Nano-rod for using as an electron transport material in perovskite solar cells." AIP Conference Proceedings. Vol. 1920. No. 1. AIP Publishing, 2018.

    [18]  Atwater, Harry A., and Albert Polman. "Plasmonics for improved photovoltaic devices." Nature materials 9.3 (2010): 205.

    [19]  Kato, Kazuhiko, et al. "A life-cycle analysis on thin-film CdS/CdTe PV modules." Solar Energy Materials and Solar Cells 67.1-4 (2001): 279-287.

    [20]  Bloss, W. H., et al. "Thin‐film solar cells." Progress in Photovoltaics: Research and Applications 3.1 (1995): 3-24.

    [21]  Fischer, Holger, and Olivier JF Martin. "Engineering the optical response of plasmonic Nano-antennas." Optics express 16.12 (2008): 9144-9154.

    [22]  Cao, Wei, et al. "Localized surface Plasmon resonance of single silver nanoparticles studied by dark-field optical microscopy and spectroscopy." Journal of applied physics109.3 (2011): 034310.

    [23]  Feng, Chuanzao, Yizhi Yang, and Yingjie Tan. "Design of broadband metamaterial near-perfect absorbers in visible region based on stacked metal-dielectric gratings." Materials Research Express (2018).

    [24]  Lang hammer, Christoph, et al. "Localized surface Plasmon resonances in aluminum Nano disks." Nano letters 8.5 (2008): 1461-1471.

    [25]  Abbey, Grant P., et al. "Structural characteristics of Au-GaAs nanostructures for increased plasmonic optical enhancement." Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XIII. Vol. 9758. International Society for Optics and Photonics, 2016.

    [26]  Qian, Jun, et al. "Nano sphere-in-a-Nano egg: damping the high-order modes induced by symmetry breaking." Nanoscale research letters 10.1 (2015): 17.

    [27]  Akimov, Yu A., Wee Song Koh, and Kostya Ostrikov. "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle Plasmon modes." Optics express 17.12 (2009): 10195-10205.

    [28]  Chu, Steven, and Arun Majumdar. "Opportunities and challenges for a sustainable energy future." nature 488.7411 (2012): 294.

    [29]  Akimov, Yuriy A., and Wee Shing Koh. "Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells." Plasmonics 6.1 (2011): 155-161.

    [30]  Kamat, Prashant V. "Meeting the clean energy demand: nanostructure architectures for solar energy conversion." The Journal of Physical Chemistry C 111.7 (2007): 2834-2860.

    [31]  Makarov, Sergey V., et al. "Light‐Induced Tuning and Reconfiguration of Nanophotonic Structures." Laser & Photonics Reviews (2017).

    [32]  Knight, Mark W., and Naomi J. Halas. "Nano shells to Nano eggs to Nano cups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit." New Journal of Physics 10.10 (2008): 105006.

    [33]  Sakir, Menekse, et al. "Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications." ACS applied materials & interfaces 9.45 (2017): 39795-39803.

    [34]  Roelli, Philippe, et al. "Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering." Nature nanotechnology 11.2 (2016): 164-169.

    [35]  Serrano, Elena, Guillermo Rus, and Javier Garcia-Martinez. "Nanotechnology for sustainable energy." Renewable and Sustainable Energy Reviews 13.9 (2009): 2373-2384

    [36]  Oldenburg, Steven J., et al. "Surface enhanced Raman scattering in the near infrared using metal Nano shell substrates." The Journal of chemical physics 111.10 (1999): 4729-4735.

    [37]  Ferry, Vivian E., et al. "Light trapping in ultrathin plasmonic solar cells." Optics express 18.102 (2010): A237-A245.

    [38]  Wang, Hui, et al. "Symmetry breaking in individual plasmonic nanoparticles." Proceedings of the National Academy of Sciences 103.29 (2006): 10856-10860.

    [39]  Ge, Lixin, et al. "Unidirectional scattering induced by the toroidal dipolar excitation in the system of plasmonic nanoparticles." Optics Express 25.10 (2017): 10853-10862.

    [40]  Takei, Hiroyuki, Michael Himmelhaus, and Takayuki Okamoto. "Absorption spectrum of surface-bound cap-shaped gold particles." Optics letters 27.5 (2002): 342-344.

    [41]  Charnay, Clarence, et al. "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties." The Journal of Physical Chemistry B 107.30 (2003): 7327-7333.

    [42]  Liu, Jingquan, et al. "Anisotropic optical properties of semitransparent coatings of gold Nano caps." Advanced Functional Materials 16.11 (2006): 1457-1461.

    [43]  Lim, S. H., et al. "Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface Plasmon polaritons in gold nanoparticles." Journal of applied physics 101.10 (2007): 104309.

    [44]  Chong, Katie E., et al. "Observation of Fano resonances in all‐dielectric nanoparticle oligomers." Small 10.10 (2014): 1985-1990.

    [45]  Sakir, Menekse, et al. "Fabrication of plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications." ACS applied materials & interfaces 9.45 (2017): 39795-39803.

    [46]  Prodan, Emil, et al. "A hybridization model for the Plasmon response of complex nanostructures." science 302.5644 (2003): 419-422.

    [47]  Beck, F. J., A. Polman, and K. R. Catchpole. "Tunable light trapping for solar cells using localized surface Plasmon." Journal of Applied Physics 105.11 (2009): 114310.

    [48]  Temple, T. L., et al. "Influence of localized surface Plasmon excitation in silver nanoparticles on the performance of silicon solar cells." Solar Energy Materials and Solar Cells 93.11 (2009): 1978-1985.

    [49]  Villesen, Thorbjørn Falk, et al. "Aluminum nanoparticles for plasmon-improved coupling of light into silicon." Nanotechnology 23.8 (2012): 085202.

    [50]  Dodson, Stephanie, et al. "Optimizing electromagnetic hotspots in plasmonic bowtie Nano antennae." The journal of physical chemistry letters 4.3 (2013): 496-501.

    [51]  Makarov, Sergey V., et al. "Light‐Induced Tuning and Reconfiguration of Nano photonic Structures." Laser & Photonics Reviews (2017).

    [52]  Katyal, Jyoti, and R. K. Soni. "Localized surface Plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures." Plasmonics 9.5 (2014): 1171-1181.

    [53]  Yu, Yiling, et al. "Dielectric core–shell optical antennas for strong solar absorption enhancement." Nano letters 12.7 (2012): 3674-3681.

    [54]  Photo courtesy:, “Plasmonic solar cell”.