[1] Eriksen, Emil H., et al. "Particle-particle interactions in large, sparse arrays of randomly distributed plasmonic metal nanoparticles: a two-particle model." Optics Express 25.16 (2017): 19354-19359.
[2] Senthil Kumar, N., et al. "Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell." Journal of Materials Science: Materials in Electronics (2018): 1-10.
[3] Catchpole, KR and, Albert Polman. "Plasmonic solar cells." Optics express 16.26 (2008): 21793- 21800.
[4] Dunbar, Ricky B., Thomas Pfadler, and Lukas Schmidt-Mende. "Highly absorbing solar cells—a survey of plasmonic nanostructures." Optics express 20.102 (2012): A177-A189.
[5] Heidarzadeh, Hamid, et al. "Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating." Applied optics 55.7 (2016): 1779-1785.
[6] Al-Adhami, Yasir, and Ergun Ercelebi. "A Plasmonic Monopole Antenna Array on Flexible Photovoltaic Panels for Further Use of the Green Energy Harvesting." Progress in Electromagnetics Research 68 (2018): 143-152.
[7] Garcia, Miguel A. "Surface Plasmon’s in metallic nanoparticles: fundamentals and applications." Journal of Physics D: Applied Physics 44.28 (2011): 283001.
[8] Diukman, Iddo, and Meir Orenstein. "How front side plasmonic nanostructures enhance solar cell efficiency." Solar Energy Materials and Solar Cells 95.9 (2011): 2628-2631.
[9] Rockstuhl, Carsten, and Falk Lederer. "Photon management by metallic Nano-discs in thin film solar cells." Applied Physics Letters 94.21 (2009): 213102 .
[10] Dunbar, Ricky B., Thomas Pfadler, and Lukas Schmidt-Mende. "Highly absorbing solar cells—a survey of plasmonic nanostructures." Optics express 20.102 (2012): A177-A189.
[11] Jiao, Hongfei, et al. "Ultra-broadband perfect absorber based on successive Nano-Cr-film." Advances in Optical Thin Films VI. Vol. 10691. International Society for Optics and Photonics, 2018.
[12] Xu, Zhenhe, et al. "Harvesting Lost Photons: Plasmon and Up conversion Enhanced Broadband Photo Catalytic Activity in Core@ Shell Microspheres Based on Lanthanide‐Doped NaYF4, TiO2, and Au." Advanced Functional Materials 25.20 (2015): 2950-2960.
[13] Lu, Zelin, et al. "Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles." RSC Advances 5.15 (2015): 11175-11179.
[14] Saravanan, S., et al. "Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver Nano-particles." Journal of Science: Advanced Materials and Devices 2.4 (2017): 418-424.
[15] Lee, Kwang-Sup, et al. "Feature issue introduction: organic and polymeric materials for photonic applications." Optical Materials Express 7.7 (2017): 2691-2696.
[16] Ren, Wenzhen, et al. "Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell." Optics express 19.27 (2011): 26536-26550
[17] Navab, Arvin Attari, et al. "Hydrothermal synthesis of TiO2 Nano-rod for using as an electron transport material in perovskite solar cells." AIP Conference Proceedings. Vol. 1920. No. 1. AIP Publishing, 2018.
[18] Atwater, Harry A., and Albert Polman. "Plasmonics for improved photovoltaic devices." Nature materials 9.3 (2010): 205.
[19] Kato, Kazuhiko, et al. "A life-cycle analysis on thin-film CdS/CdTe PV modules." Solar Energy Materials and Solar Cells 67.1-4 (2001): 279-287.
[20] Bloss, W. H., et al. "Thin‐film solar cells." Progress in Photovoltaics: Research and Applications 3.1 (1995): 3-24.
[21] Fischer, Holger, and Olivier JF Martin. "Engineering the optical response of plasmonic Nano-antennas." Optics express 16.12 (2008): 9144-9154.
[22] Cao, Wei, et al. "Localized surface Plasmon resonance of single silver nanoparticles studied by dark-field optical microscopy and spectroscopy." Journal of applied physics109.3 (2011): 034310.
[23] Feng, Chuanzao, Yizhi Yang, and Yingjie Tan. "Design of broadband metamaterial near-perfect absorbers in visible region based on stacked metal-dielectric gratings." Materials Research Express (2018).
[24] Lang hammer, Christoph, et al. "Localized surface Plasmon resonances in aluminum Nano disks." Nano letters 8.5 (2008): 1461-1471.
[25] Abbey, Grant P., et al. "Structural characteristics of Au-GaAs nanostructures for increased plasmonic optical enhancement." Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XIII. Vol. 9758. International Society for Optics and Photonics, 2016.
[26] Qian, Jun, et al. "Nano sphere-in-a-Nano egg: damping the high-order modes induced by symmetry breaking." Nanoscale research letters 10.1 (2015): 17.
[27] Akimov, Yu A., Wee Song Koh, and Kostya Ostrikov. "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle Plasmon modes." Optics express 17.12 (2009): 10195-10205.
[28] Chu, Steven, and Arun Majumdar. "Opportunities and challenges for a sustainable energy future." nature 488.7411 (2012): 294.
[29] Akimov, Yuriy A., and Wee Shing Koh. "Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells." Plasmonics 6.1 (2011): 155-161.
[30] Kamat, Prashant V. "Meeting the clean energy demand: nanostructure architectures for solar energy conversion." The Journal of Physical Chemistry C 111.7 (2007): 2834-2860.
[31] Makarov, Sergey V., et al. "Light‐Induced Tuning and Reconfiguration of Nanophotonic Structures." Laser & Photonics Reviews (2017).
[32] Knight, Mark W., and Naomi J. Halas. "Nano shells to Nano eggs to Nano cups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit." New Journal of Physics 10.10 (2008): 105006.
[33] Sakir, Menekse, et al. "Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications." ACS applied materials & interfaces 9.45 (2017): 39795-39803.
[34] Roelli, Philippe, et al. "Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering." Nature nanotechnology 11.2 (2016): 164-169.
[35] Serrano, Elena, Guillermo Rus, and Javier Garcia-Martinez. "Nanotechnology for sustainable energy." Renewable and Sustainable Energy Reviews 13.9 (2009): 2373-2384
[36] Oldenburg, Steven J., et al. "Surface enhanced Raman scattering in the near infrared using metal Nano shell substrates." The Journal of chemical physics 111.10 (1999): 4729-4735.
[37] Ferry, Vivian E., et al. "Light trapping in ultrathin plasmonic solar cells." Optics express 18.102 (2010): A237-A245.
[38] Wang, Hui, et al. "Symmetry breaking in individual plasmonic nanoparticles." Proceedings of the National Academy of Sciences 103.29 (2006): 10856-10860.
[39] Ge, Lixin, et al. "Unidirectional scattering induced by the toroidal dipolar excitation in the system of plasmonic nanoparticles." Optics Express 25.10 (2017): 10853-10862.
[40] Takei, Hiroyuki, Michael Himmelhaus, and Takayuki Okamoto. "Absorption spectrum of surface-bound cap-shaped gold particles." Optics letters 27.5 (2002): 342-344.
[41] Charnay, Clarence, et al. "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties." The Journal of Physical Chemistry B 107.30 (2003): 7327-7333.
[42] Liu, Jingquan, et al. "Anisotropic optical properties of semitransparent coatings of gold Nano caps." Advanced Functional Materials 16.11 (2006): 1457-1461.
[43] Lim, S. H., et al. "Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface Plasmon polaritons in gold nanoparticles." Journal of applied physics 101.10 (2007): 104309.
[44] Chong, Katie E., et al. "Observation of Fano resonances in all‐dielectric nanoparticle oligomers." Small 10.10 (2014): 1985-1990.
[45] Sakir, Menekse, et al. "Fabrication of plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications." ACS applied materials & interfaces 9.45 (2017): 39795-39803.
[46] Prodan, Emil, et al. "A hybridization model for the Plasmon response of complex nanostructures." science 302.5644 (2003): 419-422.
[47] Beck, F. J., A. Polman, and K. R. Catchpole. "Tunable light trapping for solar cells using localized surface Plasmon." Journal of Applied Physics 105.11 (2009): 114310.
[48] Temple, T. L., et al. "Influence of localized surface Plasmon excitation in silver nanoparticles on the performance of silicon solar cells." Solar Energy Materials and Solar Cells 93.11 (2009): 1978-1985.
[49] Villesen, Thorbjørn Falk, et al. "Aluminum nanoparticles for plasmon-improved coupling of light into silicon." Nanotechnology 23.8 (2012): 085202.
[50] Dodson, Stephanie, et al. "Optimizing electromagnetic hotspots in plasmonic bowtie Nano antennae." The journal of physical chemistry letters 4.3 (2013): 496-501.
[51] Makarov, Sergey V., et al. "Light‐Induced Tuning and Reconfiguration of Nano photonic Structures." Laser & Photonics Reviews (2017).
[52] Katyal, Jyoti, and R. K. Soni. "Localized surface Plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures." Plasmonics 9.5 (2014): 1171-1181.
[53] Yu, Yiling, et al. "Dielectric core–shell optical antennas for strong solar absorption enhancement." Nano letters 12.7 (2012): 3674-3681.
[54] Photo courtesy: www.ecn.nl, “Plasmonic solar cell”.