To over come the lower absorption of solar radiation in thin film solar cell a novel technique of combining metallic grating and metallic nano particle is presented. The increase in absorption is associated with localized surface Plasmon’s resonance that depends on many factors ranging from the size of nano particle to its shape, material of nano particle, polarization of light and the medium of enviroment in which the solar cell is placed. The solar cell is designed in COMSOL Multiphysics environment which uses the numerical finite element method (FEM). The enhancement of absorption of spectral density in the solar radiation is demonstrated, theoretically. The collective oscillaton of the metallic nano particles and metallic grating produces individual electric field thus interacting with each other to produce higher modes of excitation. This collective mode supports the dark modes of nano partiles which is very useful for harnessing the long range of radiation. To reduce reflection from the top of solar cell, anti reflection coating is provided at the top whereas the back of solar cell is made of metallic reflector aluminium. The different simulations reveals that the antireflection coating has negligent effect on the absorption of solar cell by using the integrated structure of metallic grating and nano particles. Moreover, this approach is suited for thin film solar cell which will absorb more radiations due to the multiple peaks in the spectrum of the aforementioned proposed structure.
Fazal E Hilal: University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)
Adnan Daud Khan: University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)
Muhammad Noman: University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)
Fazal E Subhan: University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)
Mohsin Hamid: University of Engineering and Technology Peshawar, Pakistan, U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E)
Aimal Daud Khan: Sarhad University of Science and Information Tecnology (SUIT)
Fazal E Hilal Adnan Daud Khan Muhammad Noman Fazal E Subhan Mohsin Hamid and Aimal Daud Khan Novel Light Trapping in Thin Film Solar Cells with Nano Particles and Integrated Diffraction Gratin International Journal of Engineering Works Vol. 6 Issue 04 PP. 126-131 April 2019
M. Green, "Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions", Progress in Photovoltaics: Research and Applications, vol. 10, no. 4, pp. 235-241, 2002.
H. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices", Nature Materials, vol. 9, no. 3, pp. 205-213, 2010.
V. Ferry, J. Munday and H. Atwater, "Design Considerations for Plasmonic Photovoltaics", Advanced Materials, vol. 22, no. 43, pp. 4794-4808, 2010.
W. Barnes, A. Dereux and T. Ebbesen, "Surface plasmon subwavelength optics", Nature, vol. 424, no. 6950, pp. 824-830, 2003.
C. Rockstuhl, S. Fahr and F. Lederer, "Absorption enhancement in solar cells by localized plasmon polaritons", Journal of Applied Physics, vol. 104, no. 12, p. 123102, 2008.
H. Lu and W. Wang, "Surface plasmon resonance absorption of composite films doped with metal nanoparticles", Optical Engineering, vol. 56, no. 6, p. 067110, 2017.
X. Li, "Plasmonic nanostructures for custom photonic devices", SPIE Newsroom, 2014.
P. Spinelli and A. Polman, "Light Trapping in Thin Crystalline Si Solar Cells Using Surface Mie Scatterers", IEEE Journal of Photovoltaics, vol. 4, no. 2, pp. 554-559, 2014.
C. Fei Guo, T. Sun, F. Cao, Q. Liu and Z. Ren, "Metallic nanostructures for light trapping in energy-harvesting devices", Light: Science & Applications, vol. 3, no. 4, pp. e161-e161, 2014.
H. Tran, V. Nguyen, B. Nguyen and D. Vu, "Light trapping and plasmonic enhancement in silicon, dye-sensitized and titania solar cells", Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 7, no. 1, p. 013001, 2016.
Chu, Steven, and Arun Majumdar. "Opportunities and challenges for a sustainable energy future." nature 488.7411 (2012): 294.
Kamat, Prashant V. "Meeting the clean energy demand: nanostructure architectures for solar energy conversion." The Journal of Physical Chemistry C 111.7 (2007): 2834-2860.
Serrano, Elena, Guillermo Rus, and Javier Garcia-Martinez. "Nanotechnology for sustainable energy." Renewable and Sustainable Energy Reviews 13.9 (2009): 2373-2384
Senthil Kumar, N., et al. "Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell." Journal of Materials Science: Materials in Electronics (2018): 1-10.
Heidarzadeh, Hamid, et al. "Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating." Applied optics 55.7 (2016): 1779-1785.
Al-Adhami, Yasir, and Ergun Ercelebi. "A Plasmonic Monopole Antenna Array on Flexible Photovoltaic Panels for Further Use of the Green Energy Harvesting." Progress in Electromagnetics Research 68 (2018): 143-152.
Jiao, Hongfei, et al. "Ultra-broadband perfect absorber based on successive Nano-Cr-film." Advances in Optical Thin Films VI. Vol. 10691. International Society for Optics and Photonics, 2018.
Saravanan, S., et al. "Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver Nano-particles." Journal of Science: Advanced Materials and Devices 2.4 (2017): 418-424.
Sakir, Menekse, et al. "Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications." ACS applied materials & interfaces 9.45 (2017): 39795-39803.
Katyal, Jyoti, and R. K. Soni. "Localized surface Plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures." Plasmonics 9.5 (2014): 1171-1181
Ge, Lixin, et al. "Unidirectional scattering induced by the toroidal dipolar excitation in the system of plasmonic nanoparticles." Optics Express 25.10 (2017): 10853-10862.
N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, “Design of Highly Efficient Light-Trapping Structures of Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007).
H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, Light trapping in ultrathin plasmonic solar cells, Opt. Express 18, A237 (2010).
V.Ferry,L.Sweatlock,D.Pacifici,andH.Atwater,Plasmonicnanostructuredesign for efficient light coupling into solar cells, Nano Lett. 8, 4391 (2008).
V. E. Ferry, J. N. Munday, and H. A. Atwater, Design considerations for plasmonic photovoltaics, Adv. Mater. 22, 4785 (2010)
D. Bouhafs, "Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells", Solar Energy Materials and Solar Cells, vol. 52, no. 1-2, pp. 79-93, 1998.
K. Park, H. Choi, C. Chang, R. Cohen, G. McKinley and G. Barbastathis, "Nanotextured Silica Surfaces with Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity", ACS Nano, vol. 6, no. 5, pp. 3789-3799, 2012
J. Son, S. Kundu, L. Verma, M. Sakhuja, A. Danner, C. Bhatia and H. Yang, "A practical superhydrophilic self cleaning and antireflective surface for outdoor photovoltaic applications", Solar Energy Materials and Solar Cells, vol. 98, pp. 46-51, 2012.
T. Yang, X. Wang, W. Liu, Y. Shi and F. Yang, "Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells", Optics Express, vol. 21, no. 15, p. 18207, 2013
Jung, S., Kim, Y., Kim, S. and Yoo, S. (2011). Design and fabrication of multi-layer antireflection coating for III-V solar cell. Current Applied Physics, 11(3), pp.538-541
Saravanan, S. and Dubey, R. (2017). Grating influence study of GaAs solar cell structures. Nanosystems: Physics, Chemistry, Mathematics, pp.503-506.
T. Markvart, "Beyond the Yablonovitch limit: Trapping light by frequency shift", Applied Physics Letters, vol. 98, no. 7, p. 071107, 2011
Y. Shi, X. Wang, W. Liu, T. Yang and F. Yang, "Light-absorption enhancement in thinfilm silicon solar cells with front grating and rear-located nanoparticle grating", physica status solidi (a), vol. 212, no. 2, pp. 312-316, 2014.
S. Castelletto and A. Boretti, "Noble Metal Nanoparticles in Thin Film Solar Cells", Nanoscience and Nanotechnology Letters, vol. 5, no. 1, pp. 36-40, 2013.
] C. Joshi, Y. Shim, T. Bigioni and J. Amar, "Critical island size, scaling, and ordering in colloidal nanoparticle self-assembly", Physical Review E, vol. 90, no. 3, 2014.
A. Baca, M. Meitl, H. Ko, S. Mack, H. Kim, J. Dong, P. Ferreira and J. Rogers, "Printable Single-Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers", Advanced Functional Materials, vol. 17, no. 16, pp. 3051-3062, 2007
J. Yoon, A. Baca, S. Park, P. Elvikis, J. Geddes, L. Li, R. Kim, J. Xiao, S. Wang, T. Kim, M. Motala, B. Ahn, E. Duoss, J. Lewis, R. Nuzzo, P. Ferreira, Y. Huang, A. Rockett and J. Rogers, "Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs", Nature Materials, vol. 7, no. 11, pp. 907-915, 2008.
W. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. West, C. Bingham, T. Starr, A. Starr, N. Jokerst and W. Padilla, "Role of surface electromagnetic waves in metamaterial absorbers", Optics Express, vol. 24, no. 6, p. 6783, 2016.
G. Wang, M. Liu, X. Hu, L. Kong, L. Cheng and Z. Chen, "Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses", Chinese Physics B, vol. 23, no. 1, p. 017802, 2014
S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou and T. Cui, "A bi-layered quad-band metamaterial absorber at terahertz frequencies", Journal of Applied Physics, vol. 118, no. 24, p. 245304, 2015.
C. Sun and X. Wang, "Efficient Light Trapping Structures of Thin Film Silicon Solar Cells Based on Silver Nanoparticle Arrays", Plasmonics, vol. 10, no. 6, pp. 1307-1314, 2015.
S. Saravanan, R. Dubey, S. Kalainathan, M. More and D. Gautam, "Design and optimization of ultrathin crystalline silicon solar cells using an efficient back reflector", AIP Advances, vol. 5, no. 5, p. 057160, 2015.
Sangjun Lee and Sangin Kim, "Optical Absorption Characteristic in Thin a-Si Film Embedded Between an Ultrathin Metal Grating and a Metal Reflector", IEEE Photonics Journal, vol. 5, no. 5, pp. 4800610-4800610, 2013.
L. Zhu, M. Shao, R. Peng, R. Fan, X. Huang and M. Wang, "Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal", Optics Express, vol. 21, no. 3, p. A313, 2013.
L. Hong, Rusli, X. Wang, H. Zheng, L. He, X. Xu, H. Wang and H. Yu, "Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement", Journal of Applied Physics, vol. 112, no. 5, p. 054326, 2012.
D. Bouhafs, "Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells", Solar Energy Materials and Solar Cells, vol. 52, no. 1-2, pp. 79-93, 1998
Ferry, Vivian E., et al. "Light trapping in ultrathin plasmonic solar cells." Optics express 18.102 (2010): A237-A245.
Catchpole, KR and, Albert Polman. "Plasmonic solar cells." Optics express 16.26 (2008): 21793- 21800.
Temple, T. L., et al. "Influence of localized surface Plasmon excitation in silver nanoparticles on the performance of silicon solar cells." Solar Energy Materials and Solar Cells 93.11 (2009): 1978-1985.
Dodson, Stephanie, et al. "Optimizing electromagnetic hotspots in plasmonic bowtie Nano antennae." The journal of physical chemistry letters 4.3 (2013): 496-501.
Katyal, Jyoti, and R. K. Soni. "Localized surface Plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures." Plasmonics 9.5 (2014): 1171-1181.
Sakir, Menekse, et al. "Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications." ACS applied materials & interfaces 9.45 (2017): 39795-39803.
Roelli, Philippe, et al. "Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering." Nature nanotechnology 11.2 (2016): 164-169.
Katyal, Jyoti, and R. K. Soni. "Localized surface Plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures." Plasmonics 9.5 (2014): 1171-1181.