Linking the Researchers, Developing the Innovations Manuscripts submittal opens till 31 August 2019. Please submit your papers at editor@kwpublisher.com or editorkwpublisher@gmail.com

  • Volume 2017

    Surface Modification of Aluminum Alloy 6060 through Plasma Electrolytic Oxidation
    (International Journal of Engineering Works)

    Vol. 4, Issue 6, PP. 114-123, June 2017
    DOI
    Keywords: Aluminium alloy, PEO, SEM, Friction coefficient, XRD, EDX

    Download PDF

    Abstract

    The impacts of electrical parameters throughout PEO development so they can be upgraded to deliver coatings with improved properties were contemplated. Alumina coatings were saved on 6060 aluminum amalgam substrates in a soluble silicate electrolyte utilizing a unipolar pulse DC current mode. The impact of preparing conditions, predominantly electrical parameters (frequency and duty cycle), on the arrangement, development conduct and properties of PEO coatings were researched. Distinctive portrayal techniques including checking electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffractometry, and contact tests were utilized to contemplate the microstructure, morphology and properties of the coatings. The connection between the phase of the PEO procedure and the properties of the covering were appeared. The voltage-time reaction was observed to be critical since it gave promptly quantifiable and helpful data about these stages. It was found that the microstructure, morphology, development rate, stage conveyance and organization of coatings could be changed by shifting the electrical parameters.

    Author

    1. Engr. Adnan Akbar: School of Material Science and Engineering, adnanakbarkhattak1983@gmail.com, Nanjing University of Science and Technology, Nanjing. Jiangsu, PR. China, +8613451825421
    2. Muhamad Adnan Qaiser: School of Material Science and Engineering, m.adnan.qaiser@gmail.com, Nanjing University of Science and Technology, Nanjing. Jiangsu, PR. China, +8613291263277
    3. Ahmad Hussain: School of Material Science and Engineering, ahmed_00277@yahoo.com, Nanjing University of Science and Technology, Nanjing. Jiangsu, PR. China, +8615950472526
    4. Rajput Ali Mustafa: School of Mechanical Engineering, mustafa11.amrr@gmail.com, Nanjing University of Science and Technology, Nanjing. Jiangsu, PR. China, +8618205084520
    5. Prof. Dansheng Xiong: School of Material Science and Engineering, xiongds@163.com, Nanjing University of Science and Technology, Nanjing. Jiangsu, PR. China.

    Full Text

    Cite

    Adnan Akbar, Muhammad Adnan Qaiser, Ahmad Hussain; Rajput Ali Mustafa, Dansheng Xiong, "Surface Modification of Aluminum Alloy 6060 through Plasma Electrolytic Oxidation" International Journal of Engineering Works, Vol. 4, Issue 6, PP. 114-123, June 2017. 

    References

    1. [1]. C. Blawert, N. Hort and K. Kainer. Automotive applications of magnesium and its alloys, Trans Indian Inst Met, 2004, 57(4): 397-108.
    2. [2]. H. Friedrich and S. Schumann. Research for a new age of magnesium in the automotive industry ,. Journal of Materials Processing Technology, 2001 117: 276-281.
    3. [3]. J.J. Michalek, P.Y. Papalambros and S.J. Skerlos. A study of fuel efficiency and emission policy impact on optimal vehicle design decisions ,. J Mech Des, 2004, 126(6): 1062-1070.
    4. [4]. H. Dieringa and K.U. Kainer. Magnesium der Zukunftswerkstoff fur die Automobilindustrie ,. Material wissenschaft und Werkstofftechnik, 2007, 38(2): 91-95.
    5. [5]. E. Aghion, B. Bronfin, D. Eliezer. The role of the magnesium industry in protecting the environment ,. Journal of Materials Processing Technology, 2001, 117(3): 381-385.
    6. [6]. Y. Sun. Thermally oxidised titanium coating on aluminium alloy for enhanced corrosion resistance ,. Materials Letters, 2004, 58: 2635-2639.
    7. [7]. X. Zhang, S. Lo Russo, S. Zandolin, A. Miotello, E. Cattaruzza and P.L. Bonora. The pitting behavior of Al-3103 implanted with molybdenum ,. Corrosion Science, 2001, 43: 85-97.
    8. [8]. P. Preston, R. Smith, A. Buchanan and J. Williams. Characterization of blister formation and pitting of tungsten ion implanted aluminium ,. Scripta Metallurgica et Materialia, 1995, 32: 2015-2020.
    9. [9]. M. Sheffer, A. Groysman and D. Mandler. Electrodeposition of sol-gel films on Al for corrosion protection ,. Corrosion Science, 2003, 45: 2893-2904.
    10. [10]. J. Masalski, J. Gluszek, J. Zabrzeski, K. Nitsch and P. Gluszek. Improvement in corrosion resistance of the 3161 stainless steel by means of AI2O3 coatings deposited by the sol-gel method ,. Thin Solid films, 1999, 349(1-2): 186-190.
    11. [11]. J. Zhao, J. Xia, A. Sehgal, D. Lu, R. McCreery and G. Frankel. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024- T3 ,. Surface and Coatings Technology, 2001, 140: 51-57.
    12. [12]. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey. Plasma electrolysis for surface engineering ,. Surface and Coatings Technology, 1999, 122: 73-93.
    13. [13]. L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankina, A. Leyland and A. Matthews. Anodic processes in plasma electrolytic oxidation of aluminum in alkaline solutions ,. Electrochimica Acta, 2004, 49: 2085-2095.
    14. [14]. W. Xue, Z. Deng, R. Chen and T. Zhang. Growth regularity of ceramic coatings formed by microarc oxidation on Al]Cu]Mg alloy ,. Thin Solid Films, 2000, 372: 114-117.
    15. [15]. F. Mecuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola and G. Henrion ,. Diagnostics of an electrolytic microarc process for aluminum alloy oxidation ,. Surface and Coatings Technology, 2005, 200: 804-808.
    16. [16]. A.V. Timoshenko and Y.V. Magurova. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarization modes ,. Surface and Coatings Technology, 2005, 199: 135-140.
    17. [17]. H. Ryu, S. Hong. Corrosion Resistance and Antibacterial Properties of Agcontaining MAO coatings on AZ31 Magnesium Alloy Formed by Microarc Oxidation ,. Journal of Electrochemical Society, 2010, 157 (4): C131-C136.
    18. [18]. X. Nie, X. Li, D. Northwood. Corrosion behavior of metallic materials in ethanolgasoline alternative fuel cell ,. Materials Science Forum, 2007, 546-549: 1093-1100.
    19. [19]. P. Zhang, X. Nie, D. Northwood. Influence of coating thickness on the galvanic corrosion properties of Mg oxide in an engine coolant ,. Surface and Coatings Technology, 2009, 203: 3271-3277.
    20. [20]. C. S. Dunleavy, I. O. Golosnoy, J. A. Curran and T. W. Clyne. Characterisation of discharge events during plasma electrolytic oxidation ,. Surface and Coatings Technology, 2009, 203: 3410-3419.
    21. [21]. A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington and A. Matthews. Discharge characterization in plasma electrolytic oxidation of aluminium ,. J. Phys. D: Appl. Phys., 2003, 36: 2110-2120.
    22. [22]. M. D. Klapkiv, H. M. Nykyforchyn and V. M. Posuvailo. Spectral analysis of an electrolytic plasma in the process of synthesis of aluminum oxide ,. Mat. Sci., 1995, 3: 333-343.
    23. [23]. F. Me cuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardina, A. Viola, J Beauvir. Tailored aluminum oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process ,. Surface and Coatings Technology, 2007, 201 : 8677-8682.
    24. [24]. A. I. Maximov and A. V. Khlustova. Optical emission from plasma discharge in electrochemical systems applied for modification of material surfaces ,. Surface and Coatings Technology, 2007, 201: 8782-8788.
    25. [25]. H. R. Griem, Plasma Spectroscopy,. Cambridge: McGraw-Hill, 1964.
    26. [26]. F. Monfort, A. Berkani, E. Matykina, P. Skeldon, G.E. Thompson, H. Habazaki, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte ,. Corros. Sci., 2007, 49: 672–693.
    27. [27]. G. Lv, W. Gu, H. Chen, W. Feng, M.L. Khosa, L. Li, et al. Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte ,. Appl. Surf. Sci.,2006, 253: 2947–2952.
    28. [28]. K.M. Lee, Y.G. Ko, D.H. Shin. Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties ,. Curr. Appl. Phys., 2011, 11: S55–S59.
    29. [29]. F. Monfort, E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson, H. Habazaki, et al. Species separation during coating growth on aluminium by spark anodizing ,. Surf. Coatings Technol., 2007, 201: 8671–8676.
    30. [30]. R.O. Hussein, X. Nie, D.O. Northwood, A. Yerokhin, A. Matthews. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process ,. J. Phys. D. Appl. Phys., 2010, 43: 105203–105216.
    31. [31]. H. Wu, J. Wang, B.B. Long, Z. Jin, W. Naidan, F. Yu, et al. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy ,. Appl. Surf. Sci., 2005, 252: 1545–1552.
    32. [32]. A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A. Matthews. Discharge characterization in plasma electrolytic oxidation of aluminium ,. J. Phys. D. Appl. Phys., 2003, 36: 2110–2120.
    33. [33]. G. Sundararajan, L. Rama Krishna. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology ,. Surf. Coatings Technol., 2003, 167: 269–277.
    34. [34]. J.M. Wheeler, J. A. Curran, S. Shrestha. Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052 ,. Surf. Coatings Technol., 2012, 207: 480–488.
    35. [35]. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey. Plasma electrolysis for surface engineering ,. Surf. Coatings Technol., 1999, 122: 73–93.
    36. [36]. F. Jaspard-mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, et al. Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process ,. Surf. Coatings Technol., 2007, 201: 8677–8682.
    37. [37]. L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan. The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation ,. Surf. Coat. Technol., 2003, 163: 484–490.
    38. [38]. R.O. Hussein, D.O. Northwood, X. Nie. Coating growth behavior during the plasma electrolytic oxidation process, J. Vac. Sci. Technol. A Vacuum ,. Surfaces Film., 2010, 28: 766–773.
    39. [39]. R.H.U. Khan, A. Yerokhin, X. Li, H. Dong, A. Matthews. Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration ,. Surf. Coatings Technol., 2010, 205: 1679–1688.
    40. [40]. C.J.-P. Steiner, D.P.H. Hasselman, R.M. Spriggs. Kinetics of the Gamma-to-Alpha Alumina Phase Transformation ,. J. Am. Ceram. Soc., 1971, 54: 412–413.
    41. [41]. R. McPherson. Formation of metastable phases in flame- and plasma-prepared alumina ,. J. Mater. Sci., 1973, 8: 851–858.
    42. [42]. C.S. Dunleavy, I.O. Golosnoy, J. A. Curran, T.W. Clyne. Characterisation of discharge events during plasma electrolytic oxidation ,. Surf. Coatings Technol., 2009, 203: 3410–34